
Jinx Tutorial

Introduction ... 4

Why Yet Another Scripting Language? ... 4

Jinx Features ... 4

Getting Started With Jinx ... 5

Jinx Prerequisites ... 5

Compiling Jinx ... 5

Running Your First Script ... 5

Hello, World! ... 6

The Jinx Language .. 7

Statements and Whitespace ... 7

Case Insensitivity .. 7

Comments .. 7

Variables, Types, and Assignment .. 8

Common Variable Types .. 8

Less Common or Advanced Types .. 9

Variable Names .. 10

Possessive Decoration ... 11

Casting and Type .. 11

Variable Scope .. 11

External Variables ... 12

Mathematical Operators ... 12

Comparison Operators .. 13

Logic Operators .. 14

Short Circuit Evaluation ... 14

Increment and Decrement Statements ... 15

Conditional Branching ... 15

Collections .. 16

Creating an Empty Collection .. 16

Collections and Initialization Lists ... 16

Accessing Collection Elements .. 17

Collection Size ... 17

Explicit Key-Value Assignment .. 17

Collections in Collections ... 17

Erasing Elements in a Collection ... 18

Empty Collection Check ... 18

Syntactic Sugar ... 18

Strings ... 19

Loops... 20

Counting Loops .. 20

Collection Loops ... 21

Conditional Loops .. 21

Breaking Out of Loops ... 22

Functions .. 23

Simple Function Declarations ... 23

Return Values ... 24

Function Parameters .. 24

Compound Expressions as Parameters ... 25

Chained Function Calls .. 25

Casting Parameters to Explicit Types ... 26

Alternative Name Parts .. 26

Optional Name Parts ... 27

Function Argument Passing Styles .. 28

Parsing Ambiguity .. 30

First Class Functions / Function Variables .. 30

Concurrency ... 31

Script-Based Concurrency ... 32

Coroutines .. 32

The Return Statement Outside Functions ... 35

Libraries .. 35

The Import Keyword .. 35

The Library Keyword .. 35

Library Names as Identifiers ... 36

Library Visibility .. 36

Library Functions .. 36

Library Properties... 37

Read-only Properties ... 37

The Jinx API ... 37

Initialization and Memory Use .. 37

The Runtime Object ... 38

The Script Object .. 40

The Variant Class .. 41

The Library Class .. 43

Native Property Registration ... 44

Native Function Registration ... 44

Native Function Registration Using Lambda Syntax ... 45

Advanced Script Topics .. 45

Using the Script-Specific User Context Data .. 45

Calling Script Functions From Native Code .. 46

String-based Table to Collection Conversion... 47

Thread Safety and Concurrency ... 49

Exceptions .. 49

Strings and Unicode ... 49

Conclusion .. 49

Introduction

Jinx is a lightweight embeddable scripting language, intended to be compiled and used

from within a host application. The library is written in modern C++, and the API is

designed to be simple and easy to use. The language syntax is highly readable, looking like

a cross between pseudo-code and natural language phrases.

Why Yet Another Scripting Language?

Lua is a highly successfully embeddable scripting language and was a major inspiration for

Jinx, along with others like C/C++, Python, AppleScript and more. As successful as Lua has

been, there are a few ways in which it is less than ideal. The language has a number of

syntax quirks and can be challenging for non-programmers to use. Lua’s original design

reflects its intended use as a data description language, and as such, many language

features are aligned for that sort of use. And while the C-based API is powerful, it can be

obtuse and tricky to use.

In contrast, Jinx is specifically designed for the sort of highly procedural, asynchronous

scripting that is often required of real-time applications like videogames. The language

itself is simple and highly readable, and has a small but robust set of features. Variables

are dynamically and strongly typed, and values are easily converted between types by

explicit casts. Properties and functions are organized by libraries that also act as

namespaces, and various levels of visibility can be assigned to these elements, rather than

sharing everything in a global namespace by default.

Jinx is written in modern C++. An important design goal was to make both the language

and the API safe and simple to use. The API was designed in such a way that makes it

extremely difficult to use incorrectly, and scripts themselves should never crash, even with

potentially bad or corrupt input.

Jinx also has a fundamentally different approach to script execution. Every script has its

own private execution stack by default, meaning each script runs as a co-routine. This

makes it incredibly simple to write a script that executes over a specified period of time, an

important feature for real-time applications. Naturally, you can use Lua this way too, but it

requires a significant amount of non-trivial boiler-plate code.

Jinx Features

• Written in modern C++.

• Robust, easy-to-use API for interaction between scripts and native code.

• Available as traditional library or header-only version.

• Intuitive syntax that looks very similar to pseudocode.

• Language and API features specifically designed for real-time applications.

• Every script executes asynchronously as a co-routine.

• Scripts and strings are fully UTF-8 compatible.

• Customizable memory allocator callbacks.

• Ref-counted memory management.

• Load and compile on the fly, pre-compile bytecode, or use a mixture of the two.

• Generated bytecode is 32/64-bit platform independent.

• Built-in profiling and memory use APIs.

Getting Started With Jinx

Here we list everything you need to get the Jinx library compiling and integrated into your

own project.

Jinx Prerequisites

Jinx is written in C++ 17, and as such, requires a compiler that conforms to this ANSI

standard. The library compiles cleanly with Visual Studio 2017 or later on Windows, the

latest version of Xcode on Mac using Clang 6.0 or later, and with g++ 8.0 or later on Linux.

In this tutorial, we’ll also assume the reader is familiar with C++, so Jinx syntax will

occasionally be explained in terms of functionality relative to C++, rather than an emphasis

on teaching someone how to program.

Compiling Jinx

Jinx supports the CMake build system. If you generate Jinx as a standalone project, CMake

will also generate all related tests and tools. If you include CMakeLists.txt from another

project, Jinx will only generate a library.

If you wish to compile Jinx using a different build system, it should be reasonably

straightforward to do so, as all required files are contained in the Source/ folder.

Alternatively, Jinx is also available as a single-header-file amalgamation. You can find this

file at Include/Jinx.hpp.

Either version provides identical functionality, so feel free to use whichever style you

prefer.

Running Your First Script

Let’s go over everything you need to do to compile and execute your first script. For now,

we’ll keep things simple and avoid complicated error handling, asynchronous behavior,

customization, and so on. To start with, you’ll create a runtime object using the

CreateRuntime() function. Each runtime object represents a distinct execution

environment. Next, you’ll compile and execute the script using the runtime’s

ExecuteScript() member function.

#include "Jinx.h"

using namespace Jinx;

// Create the Jinx runtime object
auto runtime = CreateRuntime();

// Text containing our Jinx script
const char * scriptText =
u8R"(

-- Use the core library
import core

-- Write to the debug output
write line "Hello, world!"

)";

// Create and execute a script object
auto script = runtime->ExecuteScript(scriptText);

Congratulations! You’ve compiled, created, and executed your first Jinx script.

Runtime::ExecuteScript() is a convenience function that compiles a text to bytecode,

creates a script, and executes that script in a single call. There are functions to perform

each of these steps separately, of course, which you would likely use in more complex

scenarios. We’ll look into the nuances of the native API later, but this should at least get

you far enough to start experimenting with the language itself a bit.

Hello, World!

Let’s examine the classic “Hello, world!” program written in Jinx, which will help

demonstrate some basic language features:

-- Use the core library
import core

-- Write to the default output
write line "Hello, world!"

The first thing you may notice is that Jinx supports single line comments using a pair of

dashes. The next line demonstrates how to use code modules or packages, which are

known in Jinx as libraries. There is only one built-in library called core, which we’re using

here. Using Jinx, it’s simple to create and use your own libraries as well. The import

keyword acts similar to both an #include <filename> and a using namespace in C++. We’ll

examine libraries in more detail later.

Finally, we use the core library’s write line function to output the string "Hello, world!" to

the debug output function. By default, this generates console output using the standard C

printf() function, but an application can intercept this and route the output to its own

logging functions.

The Jinx Language

Now that you’ve gotten the Jinx library compiled, and created and executed a simple script,

let’s take a quick tour of the Jinx language itself.

Statements and Whitespace

You may have noticed in our earlier example that there are no statement termination

symbols, such as the semicolon in C/C++. In Jinx, the end of each line typically marks the

termination of a statement. There are two exceptions to this rule, which we’ll demonstrate

later in more detail:

• You may add an ellipse (…) to the end of a line and continue the statement on the

next line.

• You may break up initialization lists into muliple lines.

Combining multiple statements onto a single line is not allowed. No other whitespace is

significant, except for its role in separating tokens.

Case Insensitivity

Jinx is a case insensitive language. This compliments the general design principles of acting

like a natural language. An identifier foobar is equivalent to Foobar or FOOBAR. The runtime

adheres to standardized language-independent Unicode full folding rules using a mapping

table, converting uppercase values into lowercase values prior to token comparison. The

relatively rare instances of case folding that requires language-specific lexical analysis are

not implemented.

Comments

Jinx supports both single-line and block style comments. Single line comments begin with

two dashes. Anything following those dashes on the same line is a comment.

-- This is a single-line comment

Block comments use dashes as well. Three consecutive dashes starts a block comment.

Three more consecutive dashes also ends the comment block. This form of comment

ignores newline markers, continuing until it sees a terminating symbol. We see here

several forms that block comments can take.

---Block comment---

--- Block
comment ---

Block
comment

One interesting aspect of block comments is that three dashes minimum are required to

begin and end them – more dashes on both ends are perfectly legal. This makes it possible

to create block comments like this:

Block
comment

Variables, Types, and Assignment

Variables in Jinx are dynamically typed, meaning they can be easily easily converted

between compatible types, either explicitly via casting, or implicitly with function parameter

coersion. We’ll see examples of both of these later. Unlike with some dynamically typed

languages, variables can only be declared as part of an assignment operation. This helps to

prevent errors due to a simple mistyping of a variable or identifier name.

Common Variable Types

There are six commonly-used types used in the Jinx language. We see here a few examples

showing how to assign values to some variables. The comments list the value type each

variable represents as the assignment is made. Variable assignment follows the form: set

{variable} to {expression}. Here’s what that looks like using a few built-in types.

set var1 to null -- null type
set var2 to 123.456 -- number type
set var3 to 42 -- integer type
set var4 to false -- boolean type
set var5 to "a string value" -- string type
set var6 to "red", "green", "blue" -- collection type

Aside from a few special exceptions (loops with index variables and function parameters),

all variables are declared and assigned values using this form. If you try to use a variable in

an expression that hasn’t been declared yet, it will result in a syntax error when compiling

the script.

Null

The null type is represented internally by a C++ nullptr_t. It’s primary purpose is to

differentiate itself from every other type, or to serve as an invalid type for the purpose of

error checking.

Number

The number type is represented internally by a C++ double, which on supported platforms is

a 64-bit floating-point value. Any numeric constant with a decimal point is assumed to be a

number.

Integer

The integer type is represented internally by a C++ int64_t type, a 64-bit signed integer.

Any numeric constant without a decimal part is assumed to be an integer.

Boolean

The boolean type is represented internally by a C++ bool. Possible values are true and

false.

String

The string type is represented internally by a C++ std::string. Any valid UTF-8 codepoints

are supported.

Collection

The collection type is represented internally by a C++ std::map. Several types (numbers,

integers, strings, and GUIDs) may be used as a key, but ordering between different types is

undefined. This collection type is unlike the other basic types in that the internal

representation is a pointer to a collection. As such, copying the collection from one variable

to another only copies the pointer, not all the elements it contains. The built-in comparison

operators also operate on the pointer value, not the collection values.

Less Common or Advanced Types

In additon to the more common data types, there are a few less commonly used types.

Some of these are only available via the native API, or are derived from other script

operations.

CollectionItr

A collection iterator is used when looping over a collection, and can be used to access a

node’s key or value.

Function

A handle to a function can be stored in a variable with the type function. We will discuss

how to use this feature when we discuss functions in depth.

Coroutine

A handle to a coroutine can be stored in a variable with the type coroutine. This will be

explained in more detail in the chapter on concurrency.

UserObject

A ref-counted shared pointer contains a user-defined object, primarily useful for passing

custom objects to other user-defined functions.

Buffer

A memory buffer object is useful for storing and retrieving custom data in scripts. Like

collections and user objects, this variable stores a pointer to the buffer itself, so copying the

variable does not actually copy the buffer contents.

Guid

A 128-bit Globally Unique ID can be used as collection keys or used by a host application

for a variety of purposes.

ValueType

The valuetype type represents the type of a variable. Variables can be queried at runtime

for their type by using the type keyword after the variable name, and this value allows

comparison or other operations to be performed. It’s typically used implicitly, not stored in

variables, but there is no prohibition against doing so.

Variable Names

Variables must start with a non-numeric and non-symbolic character, and it cannot be the

same as a reserved keyword. Aside from those restrictions, symbols can use any valid

Unicode character. Unlike most languages, Jinx allows multi word variables. The parser

always favors the longest possible variable name match, which you’ll see is important when

you start using functions. You may also surround a variable name in single quotes in order

to specify a multi-word variable more explicitly.

-- Both legal variable names
set some variable to 123
set 'some variable' to 123 -- Same result as previous line
set resumé to "my resumé text"

Possessive Decoration

With some functions, variable names read more naturally when using the possessive form

– that is, appending an apostrophe-s to the end. This is purely aesthetic, and has no effect

on the script. There are several forms this may take. The most common simply appends

an apostrophe and an ‘s’.

set x to "red"
set c to x's size

The second form is useful when the variable is plural or already ends with an ‘s’, in which

case the appended ‘s’ need not be applied.

set guess to "red"
set c to guess' size

Finally, in the case of compound variables surrounded by single quotes, you can simply

append an ‘s’.

set 'some var' to "red"
set c to 'some var's size

Casting and Type

Variables can be explicitly cast to other types. The runtime system will cast between many

types without issues, but will log warnings if incompatible types are cast, such as

attempting to cast a collection into a integer value. The type keyword is used to retrieve

the type of a variable or property at runtime.

-- Cast variables between integer and string types
set a to 123
set b to a as string -- b = "123"
set c to b as integer -- c = 123

-- The ‘type’ keyword retrieves a variable’s type
set d to a type -- d = integer

Variable Scope

Jinx, like many languages, has a concept of scope. The keywords begin and end can be used

to explicitly create a scope block. Variables created outside are visible to any inner scope,

but the reverse is not true.

set a to 32 -- Declare a variable at the outermost scope
begin
 set b to a -- Legal
end
set c to b -- Error: b = undefined

Other language constructs like the if or loop keywords automatically create a new scope

block. The end keyword is typically (but not always) used to mark the end of the scope.

External Variables

Variables can be set in the script by the external program before the script ever executes.

We’ll learn about how to do this later when we discuss the C++ API. Use the external

keyword to designate a variable that’s been set outside the script itself without assigning a

value to it. You can think of it as a placeholder that allows the parser to know about a

variable that doesn’t yet exist.

external var1 -- Reserve a variable
set var2 to var1 -- Assign to a new variable

Here we see an example of a variable called var1 being reserved, and then assigned to a

new variable named var2. Unlike normal variables, external variables can only be declared

at the root level. That is, you can’t declare an external variable inside a scope block of any

sort.

begin
 external var1 -- Error!
end

Mathematical Operators

Six basic math operators are supported: addition, subtraction, multiplication, division,

modulus, and negation. Mathematical expressions work like in C in that multiplication,

division, and modulus operations are executed before addition and subtraction. You can

change the operation order by explicitly grouping operations with parentheses.

-- Evaluate expressions
set a to 2 + 3 – 1 -- 4
set b to a * 4 / 2 -- 8
set c to 2 + 2 * 3 -- 8
set d to (2 + 2) * 3 -- 12

If any of the operands are numbers, the expression will always result in a number as well.

set a to 1 + 2.5 -- 3.5

If you divide two integers and the result can’t be stored in an integer, the result will be a

number. If you wish to preserve the result as an integer no matter the result, you must

explicitly cast the result of the operation back to an integer. If either value is a number,

than the result will be a number.

set a to 3 / 2 -- 1.5
set b to (3 / 2) as integer -- 1

Dividing by zero, whether using an integer or number, will result in a runtime error.

Modulus operators find the remainder of a division operation. If both values are integers,

the remainder value is also an integer. If either value is a number instead of an integer,

then the result will be a number.

set a to 5 % 3 -- 2
set b to 5 % 3.5 -- 1.5

It should also be noted that the mod operator works similarly to Python instead of C++, in

that the resulting sign matches the divisor, rather than the dividend.

set a to –5 % 3 -- 1 (in C++, -2)

As with the division operator, a mod by zero will result in a runtime error.

Negation of both constants and variables is also permitted. In the case of constants, such

as in the following statement, if the negative value prepends the numeric value with no

whitespace, both the negative sign and number are parsed together as a negative constant

value.

set a to –1

However, if a minus sign prepends a variable or the result of an expression, then the

negation operator is applied. The following code demonstrates various ways the negation

operator can be used.

set a to 1
set b to –a -- b = -1
set c to –(1 + 2) -- c = -3
set d to –a – –a -- d = 0

Comparison Operators

Comparison operations always evaluate to a true or false Boolean value. Comparing two

values for equality or not-equality uses the = and != operators. In the example below, a

value of false is assigned to a, and true is assigned to b.

set a to 1 = 2 -- false
set b to 1 != 2 -- true

Jinx also supports ‘less than’ or ‘greater than’ operators, as well as ‘less than or equal to’

and ‘greater than or equal to’ operators.

set a to 1 < 2 -- true
set b to 1 <= 2 -- true
set c to 1 > 2 -- false
set d to 1 >= 2 -- false

Comparison operators have a lower precedence than mathematical operators, and so will

be evaluated after other math operations unless otherwise indicated by parentheses.

set a to 1 + 5 < 1 + 6 -- true
set a to (1 + 5) < (1 + 6) -- true (equivalent)

For equality (=) tests, comparing fundamentally different types will result in a return value

of false, and for inequality (!=) tests, true. The exception to this rule is when comparing an

integer and number, in which case the values are logically compared as floating-point

values.

For value comparison operators (<, <=, >, >=), comparison of invalid or non-matching types

will result in a run-time error. Only types integer, number, string, and guid can use these

operators. Again, direct comparisons between types integer and number are permitted.

Logic Operators

Logical operators and and or are supported.

set a to true and false -- false
set b to true or false -- true

These operators have a lower precedence than math or comparison operations, so there is

no need to use parentheses if your intention is to evaluate math expressions first. In the

following example, both the left and right expressions surrounding and are evaluated

before the and operator is invoked.

set a to 1 != 2 and 3 != 4 -- true

The not operator has an equivalent precedence to the and and or operators, and so will

negate the expression that follows it until it reaches one of these operators. If you wish to

negate part of an expression which includes other logic operators, then you can use

parentheses to do so.

set b to not 1 != 2 and 3 != 4 -- false
set c to (not 1 != 2) and 3 != 4 –- false (equivalent)
set d to not (1 != 2 and 3 != 4) –- true (not equivalent)

Short Circuit Evaluation

As logic operators are evaluated, they are subject to “short-circuit” evaluation, which

dictates that the interpreter will bypass the runtime evaluation of the second half of an

logic operator if the outcome can be determined via the first half of the expression. Both

the and and or operators are subject to this short circuit evaluation rule.

In the following cases, the second half of the expression will be skipped, because the

outcome is already guaranteed:

set a to 1 < 2 or 3 = 4 -- 3 = 4 is not evaluated
set b to 2 < 1 and 3 = 3 -- 3 = 3 is not evaluated

Increment and Decrement Statements

For numeric variable types, you can increment or decrement variables using the increment

and decrement statements.

set a to 4
increment a -- a = 5
decrement a -- a = 4

You can also increment or decrement by a specified amount using the by keyword and a

subsequent value or expression.

set a to 4
increment a by 3 -- a = 7
decrement a by 4 -- a = 3

You cannot use the increment or decrement keywords in expressions because they don’t

return a value. They are considered to be statements, not operators.

Incrementing a non-numeric variable or incrementing by a non-numeric variable or value

will result in a runtime error.

Conditional Branching

Jinx supports if and else keywords to perform conditional branching. If the expression

following the if statement is true, the branch will be executed, and not if false.

import core

-- Simple if branch
if 1 < 2
 write line "1 < 2"
end

Notice how the end keyword is used to mark the end of the branch block. Unlike C/C++, you

must always terminate blocks explicitly. In the case of an if/else branch, the else

statement acts as the block terminator.

-- If/else
if 1 > 2
 write line "1 > 2"
else
 write line "1 <= 2"

end

-- If/else-if/else
if 1 > 2
 write line "1 > 2"
else if 1 = 2
 write line "1 = 2"
else
 write line "1 < 2"
end

-- Nested if branching
if 1 < 2
 if 3 < 4
 if 5 = 6
 write line "compound check is true"
 else
 write line "compound check isn’t true"
 end
 end
end

Collections

Collections are keyed associative arrays with arbitrary key-value pairs. When creating a

collection without explicitly specifying keys, incrementing integers are used automatically.

This allows scripts to simulate arrays using collections.

Integers, numbers, strings, and GUIDs may all be used as key values, and any value that

can be stored in a variable may be stored as the associated value component, with the

exception of null, as this value is used as a shorthand for removing elements.

Creating an Empty Collection

Creating an empty collection in Jinx is accomplished by using an empty set of index

operators.

set coll to []

Collections and Initialization Lists

Any list of values separated by commas is translated into a collection with sequential keys.

This is known as an initialization list. When elements are added without specifying a key,

new elements start with a key of one and always add elements sequentially.

set coll to 5, 4, 3, 2, 1

Accessing Collection Elements

Accessing an individual element is done with square brackets, in which the index value is

specified. Again, note that when a collection is simulating an array, the indices are one-

based, not zero-based.

set x to coll [2] -- x = 4

Collection Size

The core library contains a size function that returns the number of elements in a

collection. Remember that you must import the core library before using this function.

set c to coll's size -- c = 5

Explicit Key-Value Assignment

You can also explicitly assign both keys and values together. When two values are

contained in a set of square brackets, it is assumed to be a key-value pair. These can also

be contained in an initialization list.

-- This...
set keyed coll to [1, "one"], [2, "two"], [3, "three"], [4, "four"], [5, "five"]

-- is equivalent to this...
set unkeyed coll to "one", "two", "three", "four", "five"

Just like before, individual values are accessed via the key using the index operator. There

is no difference whether keys are assigned implicitly or explicitly.

set x to unkeyed coll [3] -- x = “three”
set x to keyed coll [3] -- x = “three”

New values can be assigned or existing values modified using this operator as well.

set coll [6] to "six"

As mentioned earlier, keys can be other types than integers. You can also use numbers,

GUIDs, or strings as keys. There is no prohibition against mixing key types, but the

elements in the collection will be sorted by type.

set coll to ["apple", 345], [111, "orange"], [12.34, false], [-99, true]

Collections in Collections

Collections may also be stored inside collections, as in this example. However, keep in

mind that collections cannot be stored as keys. Collections may be nested arbitrarily deep.

set coll to ["fruit", ["apple", 345]]

Collections stored inside collections may be accessed via multiple index operators.

set a to coll ["fruit"]["apple"] –- a = 345

If an element does not exist, it can be created in this manner as well. If the keys already

exist, the value is modified.

set coll ["fruit"]["pear"] to 789

Accessing an element that does not exist will not cause a runtime error. Instead, the

returned value will be null.

set coll to []
set a to coll ["doesn’t exist"] –- a = null

Erasing Elements in a Collection

The erase keyword is used to remove elements from a collection by key.

-- Remove element from container by key
erase coll ["apple"]

Empty Collection Check

The is empty function returns true if the collection is empty and false if not empty.

if coll is empty
 -- do something

Syntactic Sugar

We mentioned earlier that, for convenience, it is permitted to break up items in an

initialization list into multiple lines, as follows:

-- A multi-line initialization list
set unkeyed coll to...
 "one",
 "two",
 "three",
 "four",
 "five"

-- A multi-line initialization list with key-pair values
set keyed coll to...
 [1, "one"],
 [2, "two"],
 [3, "three"],
 [4, "four"],
 [5, "five"]

Breaking up individual elements within a key-value pair onto multiple lines, however, is

considered a syntax error.

In these examples, the general-purpose ellipse is required to allow the first item in the

initialization list to be placed on a new line. Subsequent items are allowed on a new line

because of the comma, which unambiguously indicates that another element in the list is

expected.

Strings

Collections are not the only variable type that uses the bracket operators. Individual

characters in strings can be accessed by using brackets with an integer index. As with

other index operators, the string index starts at one. Because Jinx has no character type,

the resulting character is also stored in a string.

set s to "Hello world!"
set c to s[1] -- c = "H"

You can also replace individual characters in the same manner.

set s to "hello world!"
set s[1] to "H" -- s = "Hello world!"

This operation will only replace a single character, but can actually insert any number of

characters into that original position. For instance, this is perfectly valid:

set s to "Hello world!"
set s[2] to "eee" -- s = "Heeello world!"

Jinx is a Unicode-aware language, and that means you are protected from accidentally

slicing apart a multi-byte string in inappropriate ways. Let’s examine how this works. In

the following script, we see a script in Japanese. Each of these characters takes up three

bytes, but this is hidden from you.

set s to "いろは" – Iroha is a Japanese poem, in case you’re curious
set s[1] to "は"
set s[3] to "い" – Text now contains "はろい" which means "fragile"

You can see we’ve swapped the characters without knowing anything about the underlying

Unicode structure.

Attempting to access outside the range of the string is an error, and will terminate the

script. You can retrieve the number of Unicode characters in a string using the size

function, like this:

import core

set str to "いろは"
set c to str's size – c = 3

So, using an index value between 1 and 3 is safe in this example.

Jinx also recognizes a special form of collection where two integers are used in an

initialization list. This form is known as an index pair, and allows us to perform string

insertion and extraction operations. Let’s revisit the first example in this section, except

this time, instead of extracting a single character, we’ll grab an entire word at once.

set s to "Hello world!"
set c to s[1, 5] -- c = "Hello"

Likewise, we can also insert a string using the same syntax. Note that the length of the

string does not have to match.

set s to "hello world!"
set s[1, 5] to "Hi" -- s = "Hi world!"

If either index in the pair is out of valid range, or if the first index is greater than the

second, an error message is logged and the script will terminate.

Loops

Jinx has a number of ways to create loops. Every loop begins with the loop keyword, and in

most cases is terminated with the end keyword.

Counting Loops

Integer-based counting is a common operation, and so has built-in language support. In

the simplest case, you can count from a low to a high integer. The starting and ending

values are inclusive, meaning the index value must exceed the specified range before the

loop exits. Any expression can be used to set the loop parameters, but this expression is

evaluated only once as the loop starts. If you require a loop which executes an expression

repeatedly, then you must use a conditional loop, explained in a later section.

Here’s how you count from one to ten.

import core

loop from 1 to 10
 write line "looping"
end

If you wish to access the index variable, you can specify a variable name to use for this.

loop x from 1 to 10
 write line "x = ", x
end

Counting down in reverse from ten to one is just as easy. Jinx will compare the two initial

starting and ending expressions and automatically count in an appropriate direction.

loop x from 10 to 1
 write line "x = ", x
end

You can also explicitly assign the value to count by, meaning you can count in either

direction and by any value. If you are specifying a “count by” value and counting in reverse,

you must be sure to specify a negative number. When using multiples, the loop will

continue as long as the index value is less than or equal to the ending value when counting

up, or greater than or equal to the ending value when counting down. In the following

example, the values of 1, 3, 5, 7, and 9 will be printed over five loops.

loop x from 1 to 10 by 2
 write line "x = ", x
end

Collection Loops

Looping over a collection uses a slightly different syntax, using the over keyword.

set 'my list' to 5, 4, 3, 2, 1
loop over 'my list'
 write line "element"
end

An optional variable can hold an iterator, which can be used to access either the key or

value at each element using core library functions of the same name.

loop x over 'my list'
 write line "key = ", x's key, ", value = ", x's value
end

It is safe to remove a collection element in the middle of the loop using the erase keyword,

as the iterator will implicitly advance to the next element after the current element is

erased.

loop x over 'my list'
 if x's value = 1
 erase x
 end
end

Conditional Loops

Jinx supports the while keyword to check for arbitrary looping conditions. The loop

continues while the expression after the while keyword evaluates to true. You may

position the statement either at the beginning or end of the loop.

-- While loop with condition at front
set x to 1
loop while x < 10
 increment x by 2
 write line "x = ", x
end

-- While loop with condition at end
set x to 0
loop
 increment x
 write line "x = ", x
while x < 10

Jinx also supports the until keyword, which reverses the conditional logic, looping while

the expression behind evaluates to false. Or, describing it differently, the loop continues

until the expression evaluates to true.

-- Until loop with condition at front
set x to 1
loop until x >= 10
 increment x by 2
 write line "x = ", x
end

-- Until loop with condition at end
set x to 0
loop
 increment x
 write line "x = ", x
until x >= 10

This provides a small syntactic convenience, allowing the loop to read more naturally

depending on the functions you have available. For instance, if you wish to loop until a

function returns a true value, you could use this while loop:

loop while not condition is met
end

However, it’s slightly easier to read using:

loop until condition is met
end

Breaking Out of Loops

You may break out of a loop by using the break keyword.

-- Use break to exit a loop
loop while true
 break
end

Functions

Functions in Jinx are perhaps its most interesting language feature. In Jinx, functions are

identified with a list of names and parameters that forms a unique function signature. Any

reserved keywords may be used as part of the function signature, so long as at least one

part of the signature is a non-keyword token. The end result can be remarkably natural-

looking prose when calling functions. For instance, a single function call may look like this:

wait between 3.5 and 10 seconds

Both wait and and are reserved keywords, which doesn’t matter at all, since between and

seconds (non-keywords) are also part of the signature. The parameter values are also very

clearly labeled, so there is no ambiguity about what 3.5 or 10 really mean.

Another interesting feature allows you to define alternate name parts that can be used

interchangeably. In the case of this particular function, when passing a value of 1, it sounds

more natural like this:

wait between 0.1 and 1 second

The last word in the function has been changed from seconds to second. This is perfectly

legal, so long as the name was defined with that particular spelling variation as well. We’ll

examine how we can do that without having to create a new overloaded function a bit later

in this section.

What happens if you declare a variable that happens to match one of the function

signature name parts? Here we’ve defined a local variable that does just this.

set seconds to 42
wait between 5 and 10 seconds

The parser will always give precedence to matching function names first, and always favors

the longest possible match. So, the preceding code will compile and execute without

issues.

Simple Function Declarations

Let’s take a look at a simple function declaration and how to call that function.

import core

-- Declares a function
function say hello
 write line "Hello!"
end

-- Calls the fuction

say hello

The function signature first requires a declaration using the function keyword. The rest of

the tokens on the line make up the name of the function. As described earlier, notice how

we aren’t limited to a single word. Calling the function is as simple as invoking its name.

Functions are registered with the runtime when the script is first executed, so the function

definition must appear in the script before any code calls it. Since the function is registered

immediately when the signature is parsed, functional recursion is supported, meaning a

function can call itself.

Functions must be declared at the root script level. They may not be declared inside scope

blocks, including conditional statements or loops, or within other functions.

Return Values

Part of the fundamental utility of functions is the ability to return values to the original

code that made the call. Jinx supports the return keyword, which allows your function to

return a value. Here’s what this looks like:

function meaning of life
 return 42
end

set a to meaning of life
write line "a’s value = ", a -- a = 42

In Jinx, function return values are always optional. Every function always returns a value,

whether or not you specify one. In the case where a return value is unspecified, the null

value is used.

An interesting side effect of Jinx’s initializer list syntax is that it allows a user to return

multiple values from a function.

function some values
 return "wolf", "goat", "cabbage"
end

set wolf to some values [1]
set goat to some values [2]
set cabbage to some values [3]

In essence, the values are returned as a collection, which you can then access by the index

operator.

Function Parameters

Let’s look at an example of a function that takes a few parameters and returns a value.

function {x} minus {y}
 return x - y
end

set a to 3 minus 2
write line "a’s value = ", a -- a = 1

Parameters are indicated by a pair of curly brackets, with a variable name between them.

In this case, two parameters x and y are treated as local variables inside the function body.

You may notice that it’s perfectly legal for a function definition to begin with a parameter

name.

As demonstrated earlier in the collections section, multiple variables or values separated

by commas are automatically turned into a collection. For this reason, parameters must

always be separated by a name part in the signature. The recommendation is to use this

name to identify the parameter in some way. Alternatively, you can choose to explicitly

support collection parameters, like the write line function. This makes it simple enough

to support arbitrary numbers of parameters to functions, since each parameter’s type can

be queried and handled appropriately at runtime.

Compound Expressions as Parameters

When passing arguments to expression, you may use any legal expression as a parameter.

Mathematical and logical expressions have a higher precedence than functions, and so are

always evaluated before the function call is executed. Here is an example:

set a to 3 * 2 minus 2 + 1 -- a = 3
set a to (3 * 2) minus (2 + 1) -- Equivalent to previous line

This works just as well with expressions passed as a middle parameter – that is, a

parameter surrounded by function names on either side. Here is another example:

function write {x} value
 write line "Value is: " + x
end
write 1 + 1 value -- OK!
write (1 + 1) value -- Equivalent to previous line

Chained Function Calls

When passing the results of other function calls as parameters, precedence works from

right to left, due to the recursive nature of how function parsing works. Let’s take a look at

an example of this:

set a to 5 minus 3 minus 1 -- a = 3
set b to 5 minus (3 minus 1) -- b = 3 (Equivalent to previous line)
set c to (5 minus 3) minus 1 -- c = 1

If you require left to right precedence, you will need to explicitly indicate this using

parenthesis.

If you have a function that takes no parameters and returns a value, this can also be used

to pass a parameter value to another function call. Note that even with multi-word

functions, the parser should be able to correctly discern the intent, so long as there are no

ambiguities.

function meaning of life
 return 42
end

function write {x} value
 write line "Value is: " + x
end

write meaning of life value -- OK!
write (meaning of life) value -- Equivalent to previous line

Casting Parameters to Explicit Types

The variable may be preceded with an optional value type keyword which indicates the

value type to which parameters will be implicitly cast. Jinx is a dynamically typed language

and will not generate compile-time errors due to type-related issues, but will instead

generate runtime errors if invalid casts occur. For instance, a collection can’t be cast to an

integer without generating an error.

Let’s look at our previous example function and see how we can ensure that any

parameters are automatically converted to numbers if possible before we subtract them.

function {number x} minus {number y}
 return x - y
end

set a to "3" minus "2" -- a = 1

Alternative Name Parts

Any names in the function signature separated by a forward slash are considered legal

alternatives, and can be substituted by the script calling the function.

function log value/values/collection {param}
 if param type = collection
 loop p over param
 log value p
 end
 else
 write "log: value = ", param
 write newline
 end

end

-- These are all legal calls to the same function
log value 321.123
log values 1, 2, 3, 4, 5
log collection ["a", "Alpha"], ["b", "Beta"], ["c", "Gamma"]

Optional Name Parts

Function signatures can contain optional name parts. In the example below, one of the

three name parts is optional, designated by parentheses. Only a single word or a group of

alternative words can be designated as optional per set of parentheses. Multiple words

may be designated as optional, but they are independently optional from each other. In

each function definition, at least one name part must be non-optional between any

parameters, or in the function definition as a whole.

In this example, we demonstrate a function with one optional name part.

function something (is) enabled
 return true
end

-- These are both legal calls to the same function
set var to something enabled
if something is enabled
 -- This code will execute
end

In code, creating optional parts can help for code to read more naturally. For instance, the

name without the optional component is useful in an assignment statement. However,

when used in an if statement, we can then use the optional name part.

As indicated, it’s also possible to combine the use of alternative name parts and optional

name parts in the same function signature, as follows:

function (this/those) (is/are) enabled
 return true
end

set a to enabled -- a is set to true

if this is enabled
 -- This code will execute
end

if those are enabled
 -- This code will execute
end

Function Argument Passing Styles

As you can see, Jinx functions are quite flexible in format. Let’s examine a few strategies

for those situations in which you may have a function with many arguments to pass.

Remember that Jinx requires a descriptive word in-between each parameter you pass to a

function. Let’s first show an example using alternating names and arguments.

function somefunc width {w} height {h} description {d}
 -- Do something useful here
end

somefunc width 3 height 15 description "a string"

One option available, if you simply wish to give a description for each parameter, is to

decorate each descriptive name part with a colon at the end. Because the colon is not a

reserved operator in Jinx, it simply becomes part of the name. It would then look like this:

function somefunc width: {w} height: {h} description: {d}
 -- Do something useful here
end

somefunc width: 3 height: 15 description: "a string"

For modest numbers of parameters, this seems like an excellent way to describe each

parameter. Its value becomes more apparent if you’re passing variables instead of literals.

set w to 3
set h to 15
set d to "a string"

somefunc width: w height: h description: d

The addition of the colon helps to indicate the purpose of each parameter quite clearly.

How about if you’d just like to pass a list of comma-separated values, like you can do in

many languages? In fact, you can simulate C-style functions with a simple list of

arguments, if this is a style you prefer:

somefunc(3, 15, "a string")

The parentheses are actually optional. So, this works just as well:

somefunc 3, 15, "a string"

How does this work? What’s actually happening here is that Jinx is creating and passing a

collection with automatically assigned index values. We’ve previously referred to this as an

initialization list, which is created any time Jinx sees a simple comma-separated list. So,

your function declaration would look something like this:

function somefunc {collection c}
 set width to c[1]
 set height to c[2]
 set description to c[3]
 -- Do something useful here
end

You can also choose to create a collection more explicitly, assigning both keys and values in

pairs. If we’re doing this, we may wish to name the parameters using strings instead of

simply using index values.

function somefunc {collection c}
 set width to c["width"]
 set height to c["height"]
 set description to c["description"]
 -- Do something useful here
end

set params to []
set params["width"] to 3
set params["height"] to 15
set params["description"] to "a string"

somefunc params

An alternate method to call this function might be to create the collection inline, like this:

somefunc ["width", 3], ["height", 15], ["description", "a string"]

If you are concerned about stuffing a large number of parameters names and values onto

a single line, keep in mind that Jinx allows you to break up initialization lists automatically,

or you can use the ellipse (...) operator to signal an explicit line break. As such, your

function call could look like this:

 somefunc ...
 ["width", 3],
 ["height", 15],
 ["description", "a string"]

For parameter validation inside the function body, you’ll have to check the assigned

variables against null, and take appropriate action, which may be logging an error or

supplying a default value. It’s perfectly safe to first attempt to assign the parameters to

variables and then check those variables, because attempting to access a non-existing key-

value pair in a collection just returns null. Here’s what this might look like:

function somefunc {collection c}
 set width to c["width"]
 set height to c["height"]
 set description to c["description"]
 if width = null or height = null or description = null

 -- Handle error
 end
 -- Do something useful here
end

While passing collection of name-value pairs is a bit more verbose, it does have the virtue

of allowing the caller to dispense with any required ordering, and even permits completely

optional parameters, assigning default values if the specified key doesn’t exist in the

collection.

As you can see, you have a fair amount of flexibility in the style you choose for your

function calls.

Parsing Ambiguity

Due to the flexible rules which allow multi-part function names with overloaded variations

and the use of reserved keywords as name parts, it is possible to accidentally create

parsing ambiguities that result in syntax errors when chaining function calls. If this occurs,

and using a less ambiguous function name is not an option, the most reliable method of

resolving those ambiguities is to use parenthesis.

First Class Functions / Function Variables

As mentioned earlier, Jinx supports first class functions. A function signature can be parsed

as an expression. The signature will be recognized as a function declaration, and this

declaration will be interpreted as a function variable. In practical terms, this means you

can pass a function to another function as a parameter.

How do you actually call a function once it’s in the form of a variable? The Jinx core library

provides two functions for invoking function variables. Let’s revisit an earlier example, but

this time we’ll invoke the say hello function using the library function call {function}.

import core

-- Define a function
function say hello
 write line "Hello!"
end

-- Call the fuction
call function say hello

Naturally, we also could have first assigned the function to a variable, and then invoked it

using that variable, like this:

import core

-- Define a function

function say hello
 write line "Hello!"
end

-- Assign function to a variable
set f to function say hello

-- Call the fuction
call f

How about returned values from a function? In this next example, the meaning of life

function returns an integer, and we assign the returned value from the call function, which

passes along any returned value from the original invoked function.

import core

-- Define a function
function meaning of life
 return 42
end

-- Call the fuction
set a to call function meaning of life -- a = 42

Passing one or more arguments to a function uses a different library function with the

signature call {function} with {}.

import core

-- Define a function
function {x} minus {y}
 return x - y
end

-- Call the fuction with arguments
set a to call function {} minus {} with 3, 2 -- a = 1

Multiple parameters are converted into a collection, and passed as the library function’s

second argument. The library function then passes these arguments along to the

designated function.

Concurrency

Jinx supports concurrency through the use of cooperative multi-tasking. There are two

ways Jinx multitasking can be used: script-based, and coroutines.

Script-Based Concurrency

Each script contains its own execution state, and so can be run indefinitely without any

interference from other scripts. A script will pause execution and return from the

Execute() function when it encounters the wait keyword.

import core

-- Assume " current time" function exists and retrieves time in seconds
set t to current time + 5

-- Loop for five seconds
loop while t < current time
 wait -- Exits execution function, continuing when Execute() is called again
end

Jinx also provides a syntactic shortcut for combining this empty loop into a single

statement, as follows:

-- Wait for five seconds
wait while t < current time

You can use the while keyword after wait, followed by any expression. The script will

continue to defer continued execution as long as the expression evaluates true.

As with loops, you can invert the logic of the expression by using the until keyword in

place of while.

-- Wait for five seconds
wait until t >= current time

Coroutines

Jinx also supports coroutines, allowing you to manage cooperative asynchronous execution

of functions. A coroutine is a function that is executed asynchronously, using cooperative

multitasking via the wait keyword.

Let’s look at a simple example to see how this can be done.

import core

-- Function definition
function hello
 loop from 1 to 10
 write line "Hello"
 wait
 end
end

-- Create a coroutine c by invoking ascync function call
set c to async call function hello

-- Execute coroutine c, and only continue when finished
wait until c is finished

Here we demonstrate how to create and execute a coroutine. The function hello is

invoked a total of 10 times until it stops printing “hello”, and we then allow the script to exit.

Since we’re also waiting in the main body of the script for the coroutine to finish, this

becomes a non-blocking script as well.

How does this actually work? The coroutine is initially invoked by the async call function.

If it encounters a wait keyword, execution is paused, and control passes back to the calling

script. From then on, we can check the execution status using the returned coroutine

variable via the {} is finished library function. This function checks whether the script is

finished, and if not, resumes the coroutine, at which point it will run until it encounters

another wait keyword. Thus, it is important to be aware that calling {} is finished or

another related coroutine polling function is necessary for a coroutine to actually finish

executing.

In many scenarios, we’ll be passing parameters to functions and retrieving return values.

Let’s look at another example to see how we’ll do this using library functions.

import core

-- Function definition
function count to {integer x}
 loop from 1 to x
 wait
 end
 return x
end

-- Execute function asynchronously and store coroutine in variable c
set c to async call function count to {} with 10

-- Wait until coroutine is finished
wait until c is finished

-- Retrieve return value from coroutine
set v to c's value

Here we’ve defined create an asynchronous function with a return value. We pass this

function declaration and a parameter of 10 to the function async call {function} with {}.

This function invokes a function with parameters as a coroutine, which is returned and

stored in the variable c. We then wait for this function to finish with the {coroutine} is

finished function. Once execution finishes, the coroutine’s return value is retrieved using

the {} value function and stored in the variable v.

Now let’s see how we can deal with multiple simultaneously executing coroutines. We’ll

modify our previous example to create three coroutines instead of just one.

import core

-- Function definition
function count to {integer x}
 loop from 1 to x
 wait
 end
 return x
end

-- Execute functions asynchronously and store coroutine in variables
set c1 to async call function count to {} with 15
set c2 to async call function count to {} with 10
set c3 to async call function count to {} with 5

-- Wait until any coroutine is finished
wait until any of c1, c2, c3 is finished

-- Retrieve return value from coroutine
set v to c1's value -- c1 = null
set v to c2's value -- c2 = null
set v to c3's value -- c3 = 5

In this example, we’re polling three different coroutines consecutively with the function any

of {collection} is finished. This function polls all coroutines, and only returns true

when at least one coroutine is finished executing.

In this particular case, since only one coroutine actually finished executing, we can only

retrieve the return value for that function. It’s not an error to request a return value for an

unfinished coroutine, but it will simply return null.

There is also a library function which can check to see if all coroutines have finished

executing, called all of {collection} are finished. If we used that function instead, the

last part of the previous example would look like this:

-- Wait until all coroutins are finished
wait until all of c1, c2, c3 are finished

-- Retrieve return value from coroutine
set v to c1's value -- c1 = 15
set v to c2's value -- c2 = 10
set v to c3's value -- c3 = 5

In this case, since all coroutines are guaranteed to be finished executing by the time the

values are check, we should see the expected final returned values of all three coroutines.

The Return Statement Outside Functions

While the return statement’s primary function is to optionally return a value from a

function, it can also be used to exit from the main body of a script. This can be useful if you

wish to check for early out conditions, or if you simply wish to temporarily disable a script

by placing a return statement before anything else can execute.

return

-- This code will never be reached
set x to 123

In this example, the code below the return statement will not be executed. Any attempt to

access the variable x will return a null type.

In this context, returning a value is meaningless, and if attempted, will generate a warning.

You can instead assign a value to any local variable and access that variable by name after

the script is finished executing.

Libraries

Multiple scripts can be packaged together into reusable modules called libraries.

Jinx makes it easy to extend the language with libraries of functions to perform any sort of

high-level task required. These libraries may take the form of Jinx scripts, native code, or a

combination of both.

It is the responsibility of the host application to manage dependencies between libraries

and any scripts which use those libraries by controlling the order of both script compilation

and execution. In order to successfully compile a script that uses a library, the scripts that

make up that library must either be compiled or executed before any script that uses it

within the same runtime object.

The Import Keyword

You’ve seen some examples using the import keyword already. This tells Jinx to allow a

specific library to be used in the script. For example, the following line tells the parser to

recognize any functions from the built-in core library.

import core

Import statements must be the first statements in a script.

The Library Keyword

After any import statements, the library keyword is optionally used to declare which

library this script belongs to. If this statement isn’t found, the library is added to a library

identified by an empty string by default. Library names follow the same naming rules as

variables. You cannot use reserved keywords as names, and multiple words must be

surrounded by single quotes.

library 'custom stuff'

Library Names as Identifiers

The import keyword also acts like the C++ using namespace keywords. If there are no name

collisions, you can use any library functions without the name of the library preceding it. In

the following example, both function calls are equivalent.

import core

write line "test"
core write line "test"

If a library function or property (a public variable) conflicts with another library name, you

will be required to specify the library name to resolve the conflict.

Library Visibility

Libraries have a notion of visibility relative to the current library in which the definition is

made. There are three levels of visibility in libraries: local, private, and public.

Local Visibility

Local visibility is implicit unless specified otherwise, and indicates visibility only within the

current script.

Private Visibility

Private visibility is declared with the private keyword, and indicates visibility within the

entire library.

Public Visibility

Public visibility is declared with the public keyword, and indicates visibility from any script

that imports the library with the import statement.

Library Functions

You can declare functions to be public or private. Simply use the public or private

keyword before the function keyword.

public function do something public
 write line "do some public task"
end

private function do something private
 write line "do some private task"

end

Library Properties

Public or private variables are called properties, and they have some additional restrictions

than normal variables. Properties cannot be declared within any scope blocks or within

functions. They must be declared so that they are visible to the entire script. As with

functions and normal variables, properties can’t be accessed until after they’ve been

declared.

set public 'public prop' to "I’m a public property"
set private 'private prop' to "I’m a private property"

Read-only Properties

Properties can also be read-only. This is useful for creating library-wide or global constant

values. The readonly keyword can be used with public or private properties.

set public readonly 'public readonly prop' to "I’m a public readonly property"

The Jinx API

The Jinx C++ API allows you to integrate the Jinx scripting language into your own

application. While an important aspect of this is compiling, executing, and managing Jinx

scripts, perhaps an even more critical aspect of an embeddable scripting language is how it

shares data with its host application. After all, the entire point of a scripting language is to

actually perform some useful task for the host application, and for that, we need a method

of sending data to and retrieving data from the scripting system.

Initialization and Memory Use

There are a few parameters in the Jinx library that are considered global, such as memory

management, hooking up debugging callbacks, and so forth. These parameters must be

initialized before you allocate the Jinx runtime object, from which all other objects are

allocated. After all, you need to define how your allocation works before you allocate any

objects. This function, however, is optional if you wish to simply use the default values.

Here is a sample of how you might use the various initialization parameters:

Jinx::GlobalParams globalParams;
globalParams.enableLogging = true;
globalParams.logBytecode = true;
globalParams.logSymbols = true;
globalParams.enableDebugInfo = true;
globalParams.logFn = [](LogLevel level, const char * msg) { printf("%s", msg); };
globalParams.allocFn = [](size_t size) { return malloc(size); };
globalParams.reallocFn = [](void * p, size_t size) { return realloc(p, size); };

globalParams.freeFn = [](void * p) { free(p); };
Jinx::Initialize(globalParams);

We won’t describe these all in detail here, as there is extensive API documentation

available. The general idea is that you may wish to replace the standard malloc/free or

logging functions with your own application-specific functions.

Jinx objects are all wrapped in shared pointers, so nothing of significance needs to be done

for deallocation. The objects will deallocate themselves as they fall out of scope.

At any point during your program’s lifetime, you may track Jinx’s memory use with the

function:

MemoryStats states = Jinx::GetMemoryStats();

Note that from here on, we’ll assume you understand that all interface elements are part of

the Jinx namespace, so you must either prepend everything with Jinx:: or add a using

namespace Jinx statement preceding these calls.

The Runtime Object

The first thing your program will do after global initialization is to create a runtime object.

Each runtime object represents a discrete runtime environment for Jinx scripts and

libraries. If wish to keep specific types of scripts completely isolated from each other, then

you may wish to create multiple runtime objects.

A runtime object is created as follows:

auto runtime = CreateRuntime();

As mentioned earlier, all Jinx interfaces use std::shared_ptr, so the allocated objects will be

deleted when they go out of scope and have no more references.

The runtime object is the interface through which you can compile scripts to bytecode,

create scripts using that compiled bytecode, create or retrieve libraries, and other such

functionality.

Let’s look at how we might compile and execute a script:

// Compile the text to bytecode
auto bytecode = runtime->Compile(scriptText);
if (!bytecode)
 return; // Compile error!

// Create a runtime script with the given bytecode
auto script = runtime->CreateScript(bytecode);

Once we have a script object, we can then execute it at any time. Most of the other

functions are variations on these core functions. One variation called ExecuteScript()

compiles, executes, and returns a script object (if all steps were successful) in a single

function call for convenience or testing.

It may be desirable to compile source just once and cache the bytecode if you plan on

creating many separate script instances that share common source code. This would

eliminate the runtime cost of compiling the same script multiple times. The bytecode is

retrieved as a shared pointer to a Buffer object, so will only be deleted when all references

to the object have been released.

Note that depending on the value of the enableDebugInfo in the global initialization

parameters, the compiled bytecode may have some additional debug information

appended in the form of an opcode to line number lookup table. This table can be

stripped from the bytecode later using the function IRuntime::StripDebugInfo(). Leaving

debug info in the bytecode doesn’t affect runtime performance, so it is recommended to

leave it in place unless you really need to minimize the memory or disk footprint of the

bytecode.

Several of the functions used to compile the script also have a few other optional

parameters. As an example, let’s examine IRuntime::CreateScript() in detail:

virtual ScriptPtr CreateScript(
 const char * scriptText,
 Any userContext = nullptr,
 String name = String(),
 std::initializer_list<String> libraries = {}
) = 0;

In this instance, obviously, the first parameter is the script text to compile.

The second parameter of script creation is a std::any userContext parameter (unless

manually overridden to be a void *). This is useful for passing script-specific application

data or objects to a script. The script is passed when calling library functions, and the

context pointer can be retrieved via the script function IScript::GetUserContext(). In this

way, you can enable library functions to operate on objects, calling member functions or

accessing data. Naturally, it falls on the programmer to ensure the data is valid and cast

correctly before use.

Another parameter, typically the third after the user context parameter, is a string that acts

as a unique identifier for compile-time or runtime identification and debugging. This is

intended to be something like a script filename, an ID number, or some other way of

identifying this particular script in log messages.

The last optional parameter is an initialization list of libraries to automatically import. If

you specify one or more library names in this parameter, users will not have to bother

typing an import statement at the beginning of each script. This can be helpful when

scripts will always be calling functions within specific libraries, helping to avoid unnecessary

typing at the start of each script.

Libraries are also created or retrieved by name using the GetLibrary() member function.

// Get or create a library by name
auto library = runtime->GetLibrary("custom");

We’ll learn more about how to use library objects a bit later.

The Script Object

Once you have a script object, you can execute the bytecode in the script at any time using

the Execute() function. The function returns true if execution was successful or false if a

runtime error was detected.

// Execute script and update runtime until script is finished
do
{
 if (!script->Execute())
 return; // Execution runtime error!
}
while (!script->IsFinished());

While a real program would probably not spin in a loop indefinitely like this code does, this

simple example demonstrates that a script may not be finished executing after the first

Execute() call. It is expected that host applications may execute a script once per frame or

simulation tick until execution has been successfully completed. Any notion of elapsed

time or work performed would be handled by user-created library functions.

The IScript interface has an IsFinished() member function that returns true when the

script is finished executing. A return value of false indicates that the program has

suspended execution using the wait keyword.

IScript also has member functions GetVariable() and SetVariable() which can set or get

variables by name. No local variables will exist before the script executes by default, but

you can explicitly set new variables before you call the Execute() function. To allow the

script to work with these externally set variables, you can declare “placeholder” variables

using the external keyword, allowing you to use those variables inside the script just like

any other variable.

In C++, you would use the following line of code before you call the script’s Execute()

function:

script->SetVariable("p", 123);

In Jinx script, getting and setting that variable would look like this:

-- Reserve the variable previously set via the API (p = 123)
external p

-- Assign the variable a different value
set p to 456

It’s also possible to read normal variables after the script is finished executing as well. Let’s

assume we have a simple script like this:

set var to 789

As long as var has been declared at the root level (meaning it wasn’t declared inside any

scope blocks), once the script is finished executing, you can access the local variable using

the IScript::GetVariable() function:

auto var = script->GetVariable("var"); // Variant containing value 789

This is an appropriate time for us to discuss how we interact with Jinx values. For that, we

need to examine the Variant class.

The Variant Class

The Variant class in Jinx is the internal representation of stored variables in scripts and the

runtime. When you access a variable via the IScript::GetVariable() function, you receive

a copy of one of these objects. The class looks a bit unwieldy with a large number of

functions, but it’s actually fairly simple.

A C++ enum called ValueType lists all the types that may be represented by a Variant object.

But more likely, however, is that you’ll simply use the many helper functions to query types,

or functions to retrieve those specific types.

Variant constructors will take any supported value type as a parameter, so that means you

can generally pass any raw value to a function parameter that take a Variant, and it will be

converted into the appropriate object type thanks to those overloaded constructors.

script->SetVariable("a", 123.45);
script->SetVariable("b", false);

script->SetVariable("c", "some string");

One thing to note is that while Jinx does use the std::basic_string class to represent

strings, it uses a specialized allocator, making it incompatible with the standard library

std::string typedef that uses the default allocator. As such, when passing or retrieving

strings, you may have to use raw C-style string using the std::basic_string::c_str()

function.

Let’s assume we’ve retrieved a Variant object from some Jinx function, and need to extract

the raw data from it.

script->Execute();
auto var = script->GetVariable("a");

In many cases, we know the specific type we’re expecting. If this is the case, we can check

with one of the type query functions.

if (var.IsNumber())
 // do something

Each type has a corresponding function for convenience, or, you can use the generic

functions to get or check the type explicitly.

if (var.IsType(ValueType::Number))
 // do something

if (var.GetType() == ValueType::Number)
 // do something

There may be times that you’re certain of the type, or else you can assume that a cast is

acceptable. In this case, you can retrieve the value using the Get functions.

auto num = var.GetNumber();

It’s important to remember that these Get functions will perform automatic value

conversions when they can conceivably do so. If the cast is deemed inappropriate – for

instance, if the original example was a string that couldn’t be parsed into an integer, the

function would return a value of zero and log a warning message. It’s your responsibility to

check types if needed.

If you need to check against a specific value, you can use the implicit construction of

appropriate types to streamline your code. For example, you can check for a variable like

this:

if (var.GetVariable("a") == "some string")
 // do something
if (var.GetVariable("b") == 456)

 // do something

In both these cases, appropriate Variant objects are implicitly created based on the types

you’re comparing against, and the overloaded Variant equality operator is then called to

check equivalence.

There is a Variant member function called CanConvertTo() to check for conversion viability

to a given type. For instance, if a Variant object contains a string with the value "42", the

string can be converted to an equivalent number, and the function would return true. If

the value is instead "banana", then no logical numeric conversion could occur, and the

function would return false;

if (var.CanConvertTo(ValueType::Number))
 // do something

Additionally, there is a Variant member function called ConvertTo() which will not just

check the viability of a conversion, but will apply that conversion to the variant object if

possible. The function still returns true or false indicating success, and so can be used in

mostly the same way as the previously described function.

if (var.ConvertTo(ValueType::Number))
 // do something

The Library Class

Libraries are the means by which you organize multiple scripts or native methods into

reusable modules that can be consumed by other scripts. As we saw earlier, we can either

create a new library or retrieve an existing library with the runtime’s GetLibrary() function.

In either case, it means a library by the name given is now registered with the runtime. Any

new scripts compiled with that runtime will now be able to access this library.

In order to compile scripts that call library script functions or properties, those library

scripts must either be compiled with the runtime, or the bytecode for the libraries must be

executed, or those elements must have been registered via the native API. This is required

because the runtime parser must be able to check a script’s content against a library’s

function signatures and property names.

Jinx has no dependency system to automate this process, because it has no way of

retrieving scripts or bytecode on its own. Your application is completely responsible for

ensuring library scripts are parsed and/or executed before any dependencies to ensure

those scripts can be compiled.

You should understand that Jinx registers library functions and properties for use by

executing the scripts in which those are defined. From then on, the functions and

properties are defined in the libraries and the runtime contains the data required for

execution.

This has ramifications for how scripts should be organized. In general, while it is possible

to execute scripts that contain library function and property definitions multiple times, it’s

wasteful and unnecessary to do so. Instead, those library function and property definitions

should be separated into scripts that can be compiled and executed only once at program

startup.

Native Property Registration

Library properties can be set from native code. This is done with a single function call. The

following code creates a public property “someprop” with a default value of 42.

auto library = runtime->GetLibrary("test");
library->RegisterProperty(Visibility::Public, Access::ReadWrite, "someprop", 42);

The ILibrary::RegisterProperty() function takes four parameters. The first parameter

sets visibility to Visibility::Public or Visibility::Private. The second parameter is

access type, which can be Access::ReadWrite or Access::ReadOnly. The third String

parameter is the name of the property. The fourth Variant parameter is the default

property value.

Native Function Registration

The library interface can also register functions. The member function

ILibrary::RegisterFuntion() is used to do this. The native functions to be used as a

callback should look something like the following:

static Variant ConvertValue(ScriptPtr script, Parameters params)
{
 return params[0] * 2;
}

The script that executed the function is passed as the parameter script, and any function

parameters are passed as params, which is actually a std::vector of Variant objects. The

number of parameters is guaranteed by the Jinx parser, so you don’t have to worry about

checking to see if parameters exist before using them. Remember that a list of parameters

separated by commas is automatically converted into a collection, even though it may look

like a variable number of arguments.

The function must return a Variant object. If no valid return value is required, then you

should return nullptr, which will be turned into a null Variant and subsequently ignored.

Registering the function looks something like the following:

auto library = runtime->GetLibrary("test");
library->RegisterFunction(Visibility::Public, "convert {} value", ConvertValue);

The first parameter indicates public or private visibility. The second parameter is a string

containing a function signature similar to what you’d write in a Jinx script, with the

difference being you don’t need to provide parameter names. Parameters are indicated

with curly braces in the string (e.g. "{}"), with an optional value type to cast the parameter

to (e.g. "{integer}"). The third parameter is the native function callback.

Native Function Registration Using Lambda Syntax

There are some alternate ways to provide Jinx with a callback function, such as by using

C++ lambda syntax to provide the function call inline. Here’s what the previous example

would look like when using lambda syntax:

library->RegisterFunction(Visibility::Public, "convert {} value",
 [](ScriptPtr script, Parameters params)->Variant
{
 return params[0] * 2;
});

Advanced Script Topics

Although Jinx is largely a procedural language, there are a few ways Jinx is specifically

designed to work with C++ objects. It is expected that a common pattern will be to attach

scripts to objects with a finite lifespan, and to execute the script with the intention of calling

a member function specific to that object. Jinx provides two ways to do this.

Using the Script-Specific User Context Data

The Jinx script object can hold a single piece of “user context” data in the std::any

container, which can be passed at script creation time. std::any is a more type safe

alternative to a void * pointer. When native callback functions are executed, the calling

script is passed to the function. The user context data can then be cast back to its original

type inside the callback function using std::any_cast. If it was a pointer to an object, the

function is then free to call a member function. Here’s an example of how this might look.

Let’s assume we have a class with member functions as follows:

void SomeObject::Initialize()
{
 // Create and execute script
 m_script = m_runtime->CreateScript(m_scriptBytecode, this);
 m_script->Execute();
}

void SomeObject::MemberFunction()

{
 // Do something via a script call
}

Now let’s also assume we’ve registered script function like the following:

Jinx::Variant CallFunc(Jinx::ScriptPtr script, Jinx::Parameters params)
{
 auto someObject = std::any_cast<SomeObject *>(script->GetUserContext());
 someObject ->MemberFunction();
 return nullptr;
}

void RegisterScriptFunctions(Jinx::RuntimePtr runtime)
{
 auto library = runtime->GetLibrary("mylib");
 library->RegisterFunction(
 Jinx::Visibility::Public,
 "call func",
 CallFunc);
}

You can see that we’ve passed the object’s this pointer to the script creation function. We

can then cast it back in the callback function and use that pointer to call a member

function. Obviously, care must be taken not to let any such script exceed the lifetime of the

object holding it, as otherwise you will get a dangling pointer.

std::any and macOS 10.14 Limitations

You should note that the use of any_cast is restricted to macOS 10.14 (Mohave) and above.

If you wish to target macOS versions lower than this, Jinx provides aliases that can

substitute void * and reinterpret_cast in place of the more modern std::any container

and std::any_cast. If you wish to switch between these, you can comment out or

conditionally modify JINX_USE_ANY in Jinx.h, and instead use the Any and JinxAnyCast aliases.

Calling Script Functions From Native Code

It’s also possible to call Jinx library functions from the script object interface, whether those

are script functions or even registered native callbacks. Let’s assume we have a script

object that has already executed this script, which means the function is now registered as

part of the runtime and is available to call:

public function {number x} minus {number y}
 return x - y
end

Note that in order to call a script function from C++, it must be declared as either a public

or private library function. Remember that when creating public or private functions in a

script, if no library is declared, the function is added to the default library, which can be

referenced with an empty string.

To call this function from a script object requires two steps. First, we have to acquire the

runtime ID of the signature, which is a 64-bit hash generated from the function signature.

This is how Jinx represents functions and properties internally. Here’s how we retrieve that

ID value.

auto id = script->FindFunction(nullptr, "{} minus {}");

If the id value is not equal to InvalidID, then it means the function was successfully located

in the runtime.

The first parameter is the library to search in. A null pointer indicates that the function

should search in the script’s assigned library. Next, we have a string representing the

function definition. Remember, if the match is not exact, the hash ID will not match either,

and the function won’t be located.

Now, let’s call the function using that id value, as well as passing it the parameters the

function requires and finally, retrieving an optional return value:

auto val = script->CallFunction(id, { 5, 2 });

We’ve now called the script function "{} minus {}", and passed it two parameters, a 5 and a

2. Naturally, we expect an answer of 3 in val.

There are a few things to remember about calling functions in Jinx. As we mentioned

earlier, you must remember that you must execute the scripts that contain these functions

before they can be accessed by any other scripts. Interestingly, it doesn’t really matter

which script you call them from, because the execution is isolated from the normal script

execution. You can even create a stand-alone no-op script specifically for the purpose of

creating an execution environment, like this:

auto script = runtime->ExecuteScript("");

Odd as it may sound, an empty string is a legitimate Jinx script which can be compiled or

even executed. Naturally, it just no-ops and exits. This little trick may be useful if you wish

to execute a Jinx library function but don’t have a script handy to call it from.

Calling Async Script Functions From Native Code

If you wish to call an async function from native code, the ICoroutine interface is available

for you to use. You just call IScript::CallAsyncFunction() instead of

IScript::CallFunction(). The parameters are identical, but a pointer to a coroutine object

is returned instead of a return value. It only has two member functions: IsFinished() and

GetReturnValue().

ICoroutine::IsFinished() checks to see if the coroutine is finished, and it not, executes

until it is finished or another wait is encountered. Combining the finish check with optional

execution matches how Jinx works internally, and also makes it easier to perform

combined logic with multiple coroutines. The ICoroutine::GetReturnValue() function

retrieves the return value if the coroutine is finished executing.

String-based Table to Collection Conversion

Jinx has a somewhat specialized string to collection conversion. You can automatically

convert a comma-delimited or tab-delimited table from a string to a collection. Detection is

performed automatically based on the number of tabs vs commas in the first row. The first

column is assumed to be the key for rows, while the top row is assumed to be keys for

columns. When the collection is finished, a collection consisting of the content of the first

column is created. Inside each value of that initial collection, a collection consisting of the

corresponding row is created.

Let’s look at a simple example to see how this might work. Assume we have a table that

looks like the following:

Name Age Gender Profession

Mark 32 male baker

Judy 29 female accountant

William 48 male carpenter

If this file is saved as a comma or tab delimited text file and loaded as a string, it can be

stored in a variable, then converted from a string to a collection. This can be done either in

native code or in a script. In native code, it would look like this:

Variant table = tableText; // Assume tableText contains the table as a string
table.ConvertTo(ValueType::Collection);

In a Jinx script, a variable can be converted from a string to a collection as follows:

set table to table as collection

Now, this variable, when accessed in code, can use [row][column] format to access any

element in the array. For instance, you can access Judy’s gender as follows:

set a to ["Judy"]["Gender"]

If you don’t know the values in the first column, you can iterate through the collection and

either obtain the key name directly using the get key function, or access the first column by

its key (in this case, "Name"), since it’s stored just like every other column value.

Thread Safety and Concurrency

In addition to each script executing as a co-routine, all library and runtime member

functions are thread-safe, allowing both scripts and external code to safely access shared

data and functions from independent threads. However, script member functions are not

thread-safe, so you must take care to only access each individual script from a single

thread or protect the script from simultaneous access from multiple threads with your own

code.

This should allow considerable freedom for using Jinx in any number of application-specific

multi-threaded scenarios.

Exceptions

The Jinx library does not use C++ exceptions. This reflects the reality that many game

developers and development platforms do not use or support exceptions, and Jinx was

specifically designed with this particular audience in mind.

Strings and Unicode

Jinx uses UTF-8 internally to represent all string data, and uses a custom typedef of

std::basic_string<char> called String, so it can use the Jinx library allocators. However,

many programs use char16_t or wchar_t strings.

If you wish to pass char16_t or wchar_t strings to the Jinx API, you can use the conversion

function Str() to do this. Additionally, when retrieving string data from the Variant class,

you can explicitly get wide-character or U16 strings as well. Here’s an example of how to

do this:

const wchar_t * wstr = script->GetVariable(Str(L"x")).GetWString().c_str();
const char16_t * str16 = script->GetVariable(Str(u"x")).GetStringU16().c_str();

Conclusion

I hope this tutorial has been helpful in giving you an overview of the Jinx language and API.

Feel free to e-mail me at james.boer@gmail.com or contact me via the GitHub project at

https://github.com/JamesBoer/Jinx. I’m curious to hear if anyone makes use of this

scripting library besides me, and how it works out for you.

mailto:james.boer@gmail.com
https://github.com/JamesBoer/Jinx

